TIL/TIL

[ML] Face Recognition details

JoJobum 2022. 8. 24. 11:24

HOG(Histogram of Gradient) 알고리즘

 

사람의 형태에 대한 검출에 많이 사용되는 feature 중 하나

이미지의 지역적인 Gradient를 활용하는 방법

 

Edge의 양과 방향을 구분하는 특성 

Overlap을 이용하여 계산  => 어느정도의 Shift에는 적응 가능

 

 

 

이미지를 받으면

=> gamma, colour 정규화 (이미지 밝기 조절, 흑백화 => 분석에 색상 필요없으니깐)

=> 각 픽셀의 gradient의 크기와 방향 계산 

=> 각각의 cell( = 8x8 픽셀로 묶은 단위)로부터 Gradient의 방향에 대한 Gradient 크기 히스토그램을 구한다

이렇게 구해진 히스토그램은 edge의 양과 방향, 즉 gradient의 크기와 방향을 구분하는 feature rkwla

=> cell 들을 묶어 block 단위로 정규화하여 최종적인 영상의 feature vector 완성

=> feature vector와 label로 이루어진 쌍들을 선형 SVM 분류기를 통해 학습

 

=> 이미지 입력시, feature vector를 가지고 detection window에서 내가 찾고자 하는 label이 있는지 확인하고 위치를 알려주는 것

 

 

Face Landmark Estimation

 

1. HOG 알고리짐으로 얻은 얼굴을 affine transformations을 통해 표준위치에 올 수 있게 만듬

2. 입, 눈썹, 눈, 코 등 얼굴의 주요 위치들의 특징과 label을 학습시켜 이를 활용한다.

=> 68개의 주요 포인트(landmark)를 얻게 됨

반응형